Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. M. Govind, ${ }^{\text {a }}$

S. Selvanayagam, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$ *
K. Ravikumar, ${ }^{\text {b }}$
A. R. Sureshbabuc and
R. Raghunathan ${ }^{c}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'baboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.151$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1'-Methyl-4'-phenylacenaphthene-1-spiro-2'-pyrrolidine- 3^{\prime}-spiro- $2^{\prime \prime}$-indan- $2,1^{\prime \prime}, 3^{\prime \prime}$-trione

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{3}$, the pyrrolidine ring adopts a twist conformation. The dihedral angle between the indan moiety and the phenyl ring is $75.4(1)^{\circ}$. The structure is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Spiro compounds are frequently of structural significance in many pharmacologically relevant alkaloids (Cravotto et al., 2001) and the present study is part of an ongoing investigation of these.

In the title compound, (I), the $\mathrm{C}-\mathrm{C}$ bond lengths in the pyrrolidine moiety are somewhat longer and the $\mathrm{C}-\mathrm{N}$ bond lengths are somewhat shorter than normal. A similar effect has been observed in a related structure (Abdul Ajees et al., 2002). This effect may be due to steric forces caused by the bulky substituents on the pyrrolidine ring. The sum of angles $\left(340.8^{\circ}\right)$ at atom N1 (Fig. 1) is in accordance with $s p^{3}$ hybridization (Beddoes et al., 1986). The N1/C2-C5 ring adopts a twist conformation, with puckering parameters $q_{2}=$ 0.497 (3) \AA and $\varphi=174.2$ (4) ${ }^{\circ}$ (Cremer \& Pople, 1975); the smallest displacement asymmetry parameter (Nardelli, 1983) is $\Delta C_{2}(\mathrm{C} 2)=0.058(1)$.

(I)

The geometry of the indandione moiety is perfectly normal, as evidenced by 41 examples in the Cambridge Structural Database (November 2003 Release; Allen, 2002). Keto atom O33 lies 0.256 (2) \AA from the indan plane, while keto atom O34 is displaced from the plane by 0.170 (1) \AA. This difference may be due to the different environments of the two O atoms, O33 being involved in hydrogen bonding (Table 2) while O34 is not.

The geometry of the acenaphthylene moiety compares well with that reported in other compounds, for example, by Guirado et al. (1989), Edwards et al. (1980) and Suzuki et al. (2003). The five-membered C2/C6/C7/C16/C15 ring adopts a twist conformation, with puckering parameters (Cremer \& Pople, 1975) $q_{2}=0.148(3) \AA$ and $\varphi=-150.4(1)^{\circ}$, and displacement asymmetry parameter $\Delta \mathrm{C}_{2}(\mathrm{C} 16)=0.018(1)$.

Received 15 January 2004
Accepted 3 March 2004
Online 20 March 2004

Figure 1
View of (I), with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

In addition to van der Waals interactions, the molecular structure is stabilized by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interaction (Table 2).

Experimental

A mixture of benzylidene-1,3-indandione (1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was refluxed in aqueous methanol until the completion of the reaction, as evidenced by thinlayer chromatography. The title compound was isolated by column chromatography.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{NO}_{3}$
$M_{r}=443.48$
Triclinic, $P \overline{1}$
$a=7.9022$ (7) £
$b=11.9197$ (10) \AA
$c=12.0382$ (10) \AA
$\alpha=84.444(2)^{\circ}$
$\beta=84.649(2)^{\circ}$
$\gamma=84.176(2)^{\circ}$
$V=1118.76(17) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.316 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2474 \\
& \quad \text { reflections } \\
& \theta=2.5-26.9^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.21 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
6877 measured reflections
4493 independent reflections
3487 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.151$
$S=1.00$
4493 reflections
308 parameters
H -atom parameters constrained

Packing of the molecules, showing the intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C2	$1.449(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.570(2)$
$\mathrm{N} 1-\mathrm{C} 31$	$1.452(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.551(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.460(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.540(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 31$	$116.5(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$101.60(13)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$109.6(1)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$104.18(13)$
$\mathrm{C} 31-\mathrm{N} 1-\mathrm{C} 5$	$114.7(2)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$106.17(13)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$101.54(13)$		
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 25-\mathrm{C} 30$	$38.4(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 33$	0.98	2.60	$2.997(2)$	104

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

DV thanks the University Grants Commission (UGC), New Delhi, for financial support.

References

Abdul Ajees, A., Manikandan, S. \& Ragunathan, R. (2002). Acta Cryst. E58, o802-o804.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. \& Watt, C. I.-F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.

Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. \& Palmisano, G. (2001). J. Org. Chem. 66, 8447-8453.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Edwards, J. M., Mangion, M., Anderson, J. B., Rapposch, M., Moews, P. \& Hite, G. (1980). Acta Cryst. B36, 1241-1244.

Guirado, A., Barba, F., Hursthouse, M. B. \& Arcas, A. (1989). J. Org. Chem. 54, 3205-3206.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Suzuki, T., Nagasu, T., Kawai, H., Fujiwara, K. \& Tsuji, T. (2003). Tetrahedron Lett. 44, 6095-6098.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

